xdt

Deine
Weiterbildungs-Merkliste
Du kannst maximal 5 Weiterbildungen in Deiner Merkliste speichern. Wenn Du eine weitere Weiterbildung hinzufügen möchtest, entferne bitte vorab eine der untenstehenden Weiterbildungen.
Du hast aktuell noch keine Weiterbildung ausgewählt. Hier kannst Du bis zu 5 Weiterbildungen speichern und anschließend Dein persönliches Infomaterial anfordern. Fordere Dein personalisiertes Infomaterial für bis zu 5 Weiterbildungen an.

Kurshandbuch
UPS-MDPDSMG
Data Scientist - Methodische Grundlagen (m/w/d)
Inhaltsverzeichnis
  1. Weiterführende Mathematik
  2. Weiterführende Statistik
  3. Machine Learning
  4. Deep Learning
Fakten zur Weiterbildung

Kursart: Online-Vorlesung

Dauer: Vollzeit: 4 Monate / Teilzeit: 8 Monate

Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.

Niveau: Die Weiterbildung ist auf dem inhaltlichen Niveau eines Master Studiengangs.
Eine Weiterbildung auf Master-Niveau ist anspruchsvoller als auf Bachelor-Niveau. Vorhandenes Grundlagenwissen im gewählten Fachbereich ist deshalb von Vorteil.
Zugangsempfehlungen: Programmieren mit Python oder gleichwertige Vorkenntnisse

Praxis-Austausch: Wöchentlich diskutieren Praxisexpert:innen mit Teilnehmenden aus verschiedenen Weiterbildungen aktuelle Fragestellungen, Tools und praktische Fallbeispiele in 90-minütigen Online-Veranstaltungen.

Kurs: DLMDWWM01
Weiterführende Mathematik
Kursbeschreibung

Moderne Techniken zur Datenanalyse und zur Ableitung von Vorhersagen für zukünftige Ereignisse sind tief in mathematischen Techniken verwurzelt.

Der Kurs bildet eine solide Grundlage, um die Konzepte hinter fortschrittlichen Algorithmen zur Verarbeitung, Analyse und Vorhersage von Daten und Beobachtungen zu verstehen und ermöglicht es den Studierenden, zukünftige Forschungsarbeiten, insbesondere in den Bereichen der datenintensiven Wissenschaften, zu verfolgen.

Der Kurs behandelt Differenzierung und Integration und diskutiert dann partielle Differenzierung, Differenzierung, Vektoralgebra und Vektorrechnung. Matrixberechnung und Vektorräume sind die Grundlage für viele moderne Datenverarbeitungsalgorithmen und werden ausführlich diskutiert. Es werden Berechnungen auf Basis von Tensoren vorgestellt.

Gängige Metriken werden aus informativer, theoretischer Sicht diskutiert.

Kursinhalte
  1. Kalkül
    1. Differenzierung & Integration
    2. Teilweise Differenzierung & Integration
    3. Vektoranalyse
    4. Variationsrechnung
  2. Integrale Transformationen
    1. Faltung
    2. Fourier-Transformation
  3. Vektor-Algebra
    1. Skalare und Vektoren
    2. Addition, Subtraktion von Vektoren
    3. Multiplikation von Vektoren, Vektorprodukt, Skalarprodukt
  4. Vektorrechnung
    1. Integration von Vektoren
    2. Differenzierung von Vektoren
    3. Skalare und Vektorfelder
    4. Vektor-Operatoren
  5. Matrizen und Vektorräume
    1. Grundlegende Matrix Algebra
    2. Determinante, Spuren, Transponierte, Komplexe und Hermitianische Konjugate
    3. Eigenvektoren und Eigenwerte
    4. Diagonalisierung
    5. Tensoren
  6. Informationstheorie
    1. MSE
    2. Gini-Index
    3. Entropie, Shannon-Entropie, Kulback Leibler Distanz
    4. Kreuzentropie

Fakten zum Modul

Modul: Weiterführende Mathematik (DLMDWWM)

Niveau: Master

Unterrichtssprache: Deutsch

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLMDWWM01 (Weiterführende Mathematik)
Kurs: DLMDWWS01
Weiterführende Statistik
Kursbeschreibung

Fast alle Prozesse in der Natur und technische oder wissenschaftliche Szenarien sind nicht deterministisch, sondern stochastisch. Daher müssen diese Prozesse in Form von Wahrscheinlichkeiten und Wahrscheinlichkeitsdichteverteilungen beschrieben werden.

Nach der Definition und Einführung der grundlegenden Konzepte der Statistik behandelt der Kurs wichtige Wahrscheinlichkeitsverteilungen und deren Prävalenz in Anwendungsszenarien; diskutiert deskriptive Techniken zur effektiven Zusammenfassung und Visualisierung von Daten; und diskutiert den Bayesschen Ansatz zur Statistik.

Die Parameterschätzung ist ein wichtiger Bestandteil bei der Optimierung von Datenmodellen und der Kurs gibt einen umfassenden Überblick über die wichtigsten Techniken.

Die Hypothesentests sind ein wesentlicher Aspekt bei der Etablierung der Beobachtung neuer Effekte und der Bestimmung der Signifikanz statistischer Effekte. Besonderes Augenmerk wird auf die korrekte Interpretation der p-Werte und das richtige Verfahren für multiple Hypothesentests gelegt.

Kursinhalte
  1. Einführung in die Statistik
    1. Zufallsvariablen
    2. Kolmogorov Axiome
    3. Wahrscheinlichkeitsverteilungen
    4. Zerlegung von Wahrscheinlichkeitsverteilungen
    5. Erwartungswerte und Momente
    6. Zentraler Grenzwertsatz
    7. Ausreichende Statistiken
    8. Probleme der Dimensionalität
    9. Komponentenanalyse und Diskriminanzfaktoren
  2. Wichtige Wahrscheinlichkeitsverteilungen und ihre Anwendungen
    1. Binomiale Verteilung
    2. Gauß oder Normalverteilung
    3. Poisson- und Gamma-Poisson-Verteilung
    4. Weibull-Verteilung
  3. Bayessche Statistik
    1. Bayes Regel
    2. Schätzung des Vorgängers, des Benford'schen Gesetzes, der Jeffry'schen Regel
    3. Vorgänger konjugieren
    4. Bayesscher und häufiger Ansatz
  4. Beschreibende Statistik
    1. Mittelwert, Median, Modus, Quantile
    2. Varianz, Schiefe, Kurtosis,
  5. Datenvisualisierung
    1. Allgemeine Grundsätze von Dataviz/Visuelle Kommunikation
    2. 1D, 2D-Histogramme
    3. Box Plot, Geigenplot, Geigenplot
    4. Streudiagramm, Streudiagrammmatrix, Profildiagramm
    5. Balkendiagramm
  6. Parameterschätzung
    1. Maximale Wahrscheinlichkeit
    2. Gewöhnliche kleinste Quadrate
    3. Erwartungsmaximierung (EM)
    4. Lasso- und Ridge-Regulierung
    5. Verbreitung von Unsicherheiten
  7. Hypothesentest
    1. Fehler der 1. und 2. Art
    2. Mehrere Hypothesentests
    3. p-Wert

Fakten zum Modul

Modul: Weiterführende Statistik (DLMDWWS)

Niveau: Master

Unterrichtssprache: Deutsch

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Workbook
Kurse im Modul:
  • DLMDWWS01 (Weiterführende Statistik)
Kurs: DLMDWML01
Machine Learning
Kursbeschreibung

Das maschinelle Lernen ist ein wissenschaftliches Studiengebiet, das sich mit algorithmischen Techniken beschäftigt, die es Maschinen ermöglichen, die Leistung bei einer bestimmten Aufgabe durch die Entdeckung von Mustern oder Gesetzmäßigkeiten in exemplarischen Daten zu erlernen. Folglich stützen sich seine Verfahren in der Regel auf eine statistische Grundlage in Verbindung mit den Berechnungsmöglichkeiten moderner Computerhardware.

Dieser Kurs zielt darauf ab, den Studierenden mit den Hauptgebieten des maschinellen Lernens vertraut zu machen und eine gründliche Einführung in die am häufigsten verwendeten Ansätze und Methoden in diesem Bereich zu geben.

Kursinhalte
  1. Einführung in das maschinelle Lernen
    1. Regression & Klassifizierung
    2. Beaufsichtigtes und unbeaufsichtigtes Lernen
    3. Stärkung des Lernens
  2. Clustering
    1. Einführung in das Clustering
    2. K-Mittel
    3. Erwartungsmaximierung
    4. DBScan
    5. Hierarchisches Clustering
  3. Regression
    1. Lineare und nicht lineare Regression
    2. Logistische Regression
    3. Quantile Regression
    4. Multivariate Regression
    5. Lasso & Ridge Regression
  4. Unterstützung von Vektor-Maschinen
    1. Einführung in den Support von Vektor-Maschinen
    2. SVM für die Klassifizierung
    3. SVM für Regressionen
  5. Entscheidungsbäume
    1. Einführung in die Entscheidungsbäume
    2. Entscheidungsbäume für die Klassifizierung
    3. Entscheidungsbäume für die Regression
  6. Genetische Algorithmen
    1. Einführung in die genetischen Algorithmen
    2. Anwendungen genetischer Algorithmen
Fakten zum Modul

Modul: Machine Learning (DLMDWML)

Niveau: Master

Unterrichtssprache: Deutsch

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLMDWML01 (Machine Learning)
Kurs: DLMDWDL01
Deep Learning
Kursbeschreibung

Neuronale Netzwerke und Deep-Learning-Ansätze haben in den letzten Jahren die Bereiche Datenwissenschaft und künstliche Intelligenz revolutioniert, und Anwendungen, die auf diesen Techniken aufbauen, haben in vielen Spezialanwendungen die menschliche Leistungsfähigkeit erreicht oder übertroffen.

Nach einem kurzen Überblick über die Ursprünge neuronaler Netze und Tiefenlernen behandelt dieser Kurs die gängigsten neuronalen Netzarchitekturen und diskutiert im Detail, wie neuronale Netze anhand von speziellen Datenproben trainiert werden, um häufige Fallstricke wie Übertraining zu vermeiden.

Der Kurs vermittelt einen detaillierten Überblick über alternative Methoden zum Training neuronaler Netze und weitere Netzwerkarchitekturen, die für eine Vielzahl von speziellen Anwendungsszenarien relevant sind.

Kursinhalte
  1. Einführung in das Neuronale Netzwerk und Deep Learning
    1. Das biologische Gehirn
    2. Perzeptron und mehrschichtige Perzeptrone
  2. Netzwerkarchitekturen
    1. Feed-Forward-Netze
    2. Neuronale Faltungsnetze
    3. Rekurrente neuronale Netze, Speicherzellen und LSTMs
  3. Training Neuronaler Netze
    1. Backpropagation und Gradientenabstieg
    2. Gewichtsinitialisierung
    3. Regularisierung und Übertraining
  4. Alternative Trainingsmethoden
    1. Aufmerksamkeit
    2. Feedback-Ausrichtung
    3. Synthetische Gradienten
    4. Entkoppelte Netzwerkschnittstellen
    5. Transfer Learning
  5. Weitere Netzwerkarchitekturen
    1. Generative Adversarial Networks
    2. Autoencoder
    3. Restricted Boltzmann Machines
    4. Kapsel-Netzwerke
    5. Spiking-Networks

Fakten zum Modul

Modul: Deep Learning (DLMDWDL)

Niveau: Master

Unterrichtssprache: Deutsch

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Fachpräsentation
Kurse im Modul:
  • DLMDWDL01 (Deep Learning)

JETZT INFOMATERIAL ANFORDERN

Schön, dass Du Deine Auswahl getroffen hast und mehr über Deine Weiterbildung bei der IU Akademie erfahren willst. Fordere jetzt Dein Infomaterial an: kostenlos und unverbindlich.

Du hast folgende auf Deiner Merkliste:

Copyright © 2025 | IU Internationale Hochschule - Alle Rechte vorbehalten