xdt

Deine
Weiterbildungs-Merkliste
Du kannst maximal 5 Weiterbildungen in Deiner Merkliste speichern. Wenn Du eine weitere Weiterbildung hinzufügen möchtest, entferne bitte vorab eine der untenstehenden Weiterbildungen.
Du hast aktuell noch keine Weiterbildung ausgewählt. Hier kannst Du bis zu 5 Weiterbildungen speichern und anschließend Dein persönliches Infomaterial anfordern. Fordere Dein personalisiertes Infomaterial für bis zu 5 Weiterbildungen an.

Kurshandbuch
Fakten zur Weiterbildung

Kursart: Online-Vorlesung

Dauer: Vollzeit: 4 Monate / Teilzeit: 8 Monate

Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.

Niveau: Die Weiterbildung ist auf dem inhaltlichen Niveau eines Bachelor Studiengangs.
Eine Weiterbildung auf Bachelor-Niveau vermittelt grundlegende Kenntnisse und Fähigkeiten in einem bestimmten Fachbereich.
Zugangsempfehlungen:

Praxis-Austausch: Wöchentlich diskutieren Praxisexpert:innen mit Teilnehmenden aus verschiedenen Weiterbildungen aktuelle Fragestellungen, Tools und praktische Fallbeispiele in 90-minütigen Online-Veranstaltungen.

Kurs: DLBDSBDT01
Big Data Technologies
Kursbeschreibung

Data are often considered the “new oil”, the raw material from which value is created. To harness the power of data, the data need to be stored and processed on a technical level. This course introduces the four “Vs” of data, as well as typical data sources and types.

The course discusses the most common data storage formats encountered in modern systems, focusing both on text-based as well as binary data formats.

Handling large amounts of data poses significant challenges for the underlying infrastructure. The course discusses the most important distributed and streaming data handling frameworks which are used in leading edge applications.

Kursinhalte
  1. Data Types and Data Sources
    1. The 4Vs of data: volume, velocity, variety, veracity
    2. Data sources
    3. Data types
  2. Working with Common Data Formats
    1. Text-Based Formats (CSV, XML, JSON)
    2. Binary Formats (HDF5, Parquet, Arrow)
  3. NoSQL data stores
    1. Introduction and motivation
    2. Approaches and technical concepts
  4. Distributed Systems
    1. Hadoop & MapReduce
    2. Hadoop file system (HDFS)
    3. Spark
    4. DASK
  5. Streaming Frameworks
    1. Spark streaming
    2. Kafka

Fakten zum Modul

Modul: Big Data Technologies (DLBDSBDT)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLBDSBDT01 (Big Data Technologies)
Kurs: DLBDSCC01
Cloud Computing
Kursbeschreibung
Many of the recent advances in data science, particularly machine learning and artificial intelligence, rely on comprehensive data storage and computing power. Cloud computing is one way of providing that power in a scalable way, without considerable upfront investment in hardware and software resources. This course introduces the area of cloud computing together with its enabling technologies. Moreover, the most cutting-edge advances like serverless computing and storage are illustrated. Finally, a thorough overview on popular cloud offerings, especially in regard to analytics capabilities, is given.
Kursinhalte
  1. Introduction to Cloud Computing
    1. Fundamentals of Cloud computing
    2. Cloud Service Models
    3. Benefits and Risks
  2. Enabling Technology
    1. Virtualization and Containerization
    2. Storage Technology
    3. Networks and RESTful Services
  3. Serverless Computing
    1. Introduction to Serverless Computing
    2. Benefits
    3. Limitations
  4. Established Cloud Platforms
    1. General Overview
    2. Google Cloud Platform
    3. Amazon Web Services
    4. Microsoft Azure
    5. Platform Comparison
  5. Data Science in the Cloud
    1. Provider-independent services and tools
    2. Google Data Science and Machine Learning Services
    3. Amazon Web Services Data Science and Machine Learning Services
    4. Microsoft Azure Data Science and Machine Learning Services

Fakten zum Modul

Modul: Cloud Computing (DLBDSCC)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLBDSCC01 (Cloud Computing)
Kurs: DLBDSEDE01
Data Engineering
Kursbeschreibung

This course explores concepts of data engineering. Data engineering is concerned with the infrastructure aspects of data science such as data storage and provision, as well as the provisioning of suitable operational environments.

After laying out foundational notions and concepts of the discipline, this course addresses important developments in storage technology; aspects of systems architecture for processing data at scale; containerization as a modern take on virtualization; and the logic of data pipelines and associated operational aspects. Important issues pertaining to data security and protection are also given appropriate attention.

Kursinhalte
  1. Foundations of Data Engineering
    1. Reliability
    2. Scalability
    3. Maintainability
  2. NoSQL In Depth
    1. Fundamentals of NoSQL
    2. Established NoSQL solutions
  3. Architectures for Data Processing at Scale
    1. Batch processing architectures
    2. Architectures for stream and complex event processing
    3. Lambda architecture
  4. Containerization In Depth
    1. Docker containers
    2. Container management
  5. Governance & Security
    1. Data protection
    2. Data security
    3. Data governance
  6. Operational Aspects
    1. Defining principles of DataOps
    2. Building and maintaining data pipelines
    3. Metrics and monitoring

Fakten zum Modul

Modul: Data Engineering (DLBDSEDE1)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLBDSEDE01 (Data Engineering)
Kurs: DLBDSEDE02
Projekt: Data Engineering
Kursbeschreibung

The focus of this course is the implementation of a real-world data engineering use case in the form of a student portfolio.

To this end, students choose a project subject from the various sub-domains of data engineering. Examples include setting up a Docker container environment or dockerized service; implementing a data pipeline according to DataOps principles; and setting up an NoSQL data store.

The goal is for students to demonstrate they can transfer theoretical knowledge to an implementation scenario that closely mimics practical work in a professional data engineering setting.

Kursinhalte
  • This course covers the practical implementation of approaches and techniques covered in the preceding methodological course in a project-oriented setting. Each participant must produce a portfolio detailing and documenting the work. Porfolio themes are chosen from a list, or suggested by the students in accord with the tutor.
Fakten zum Modul

Modul: Data Engineer II (DLBDSEDE2)

Niveau: Bachelor

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Portfolio
Kurse im Modul:
  • DLBDSEDE02 (Projekt: Data Engineering)

JETZT INFOMATERIAL ANFORDERN

Schön, dass Du Deine Auswahl getroffen hast und mehr über Deine Weiterbildung bei der IU Akademie erfahren willst. Fordere jetzt Dein Infomaterial an: kostenlos und unverbindlich.

Du hast folgende auf Deiner Merkliste:

Copyright © 2024 | IU Internationale Hochschule - Alle Rechte vorbehalten