Weiterbildungs-Merkliste
Kursart: Online-Vorlesung
Dauer: Vollzeit: 4 Monate / Teilzeit: 8 Monate
Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.
Praxis-Austausch: Wöchentlich diskutieren Praxisexpert:innen mit Teilnehmenden aus verschiedenen Weiterbildungen aktuelle Fragestellungen, Tools und praktische Fallbeispiele in 90-minütigen Online-Veranstaltungen.
Data are often considered the “new oil”, the raw material from which value is created. To harness the power of data, the data need to be stored and processed on a technical level. This course introduces the four “Vs” of data, as well as typical data sources and types.
The course discusses the most common data storage formats encountered in modern systems, focusing both on text-based as well as binary data formats.
Handling large amounts of data poses significant challenges for the underlying infrastructure. The course discusses the most important distributed and streaming data handling frameworks which are used in leading edge applications.
Modul: Big Data Technologies (DLBDSBDT)
Niveau: Bachelor
Unterrichtssprache: English
Modul: Cloud Computing (DLBDSCC)
Niveau: Bachelor
Unterrichtssprache: English
This course explores concepts of data engineering. Data engineering is concerned with the infrastructure aspects of data science such as data storage and provision, as well as the provisioning of suitable operational environments.
After laying out foundational notions and concepts of the discipline, this course addresses important developments in storage technology; aspects of systems architecture for processing data at scale; containerization as a modern take on virtualization; and the logic of data pipelines and associated operational aspects. Important issues pertaining to data security and protection are also given appropriate attention.
Modul: Data Engineering (DLBDSEDE1)
Niveau: Bachelor
Unterrichtssprache: English
The focus of this course is the implementation of a real-world data engineering use case in the form of a student portfolio.
To this end, students choose a project subject from the various sub-domains of data engineering. Examples include setting up a Docker container environment or dockerized service; implementing a data pipeline according to DataOps principles; and setting up an NoSQL data store.
The goal is for students to demonstrate they can transfer theoretical knowledge to an implementation scenario that closely mimics practical work in a professional data engineering setting.
Modul: Data Engineer II (DLBDSEDE2)
Niveau: Bachelor
Unterrichtssprache: English
super, dass Du Dich weiterentwickeln möchtest! Gerne unterstützen wir Dich individuell bei der Wahl Deiner Weiterbildung. Und vorab informieren wir Dich über Deine Möglichkeiten - Dein Infomaterial wird in Kürze per E-Mail bei Dir ankommen.
Deine nächsten Schritte:
Sobald Du Dich für eine Weiterbildung bei uns entschieden hast, kannst Du Dich mit Deinem Bildungsgutschein der Agentur für Arbeit oder des Jobcenters bei uns anmelden.
Du hast noch keine Bildungsgutschein? Auch kein Problem! Melde Dich in beiden Fällen gerne bei unserer Beratung, sie steht Dir mit Rat und Tat zur Seite:
Wir freuen uns darauf, Dich kennenzulernen.
Dein Team der IU Akademie
super, dass Du Dich weiterentwickeln möchtest! Gerne unterstützen wir Dich individuell bei der Wahl Deiner Weiterbildung. Und vorab informieren wir Dich über Deine Möglichkeiten - Dein Infomaterial wird in Kürze per E-Mail bei Dir ankommen.
Deine nächsten Schritte:
Sobald Du Dich für eine Weiterbildung bei uns entschieden hast, kannst Du Dich mit Deinem Bildungsgutschein der Agentur für Arbeit oder des Jobcenters bei uns anmelden.
Du hast noch keine Bildungsgutschein? Auch kein Problem! Melde Dich in beiden Fällen gerne bei unserer Beratung, sie steht Dir mit Rat und Tat zur Seite:
Wir freuen uns darauf, Dich kennenzulernen.
Dein Team der IU Akademie
Copyright © 2024 | IU Internationale Hochschule - Alle Rechte vorbehalten