Weiterbildungs-Merkliste
Kursart: Online-Vorlesung
Dauer: Vollzeit: 7 Monate / Teilzeit: 14 Monate
Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.
Praxis-Austausch: Wöchentlich diskutieren Praxisexpert:innen mit Teilnehmenden aus verschiedenen Weiterbildungen aktuelle Fragestellungen, Tools und praktische Fallbeispiele in 90-minütigen Online-Veranstaltungen.
Data science emerged as a multi-disciplinary field aimed at creating value from data. This course starts with an overview of data science and related fields and then defines data types and sources. Special focus is put on the assessment of data quality and electronic data processing.
Use of data-driven methods has become vital for businesses, and this course outlines how data-driven approaches can be integrated within a business context and how operational decisions can be made using data-driven methods.
Finally, this course highlights the importance of statistics and machine learning in the field of data science and gives an overview of relevant methods and approaches.
Modul: Introduction to Data Science (DLBDSIDS-01)
Niveau: Bachelor
Unterrichtssprache: English
Modul: Data Quality and Data Wrangling (DLBDSDQDW)
Niveau: Bachelor
Unterrichtssprache: English
A core part of data science is creating value from data. This means not only the creation of sophisticated predictive models but also the development of these models according to modern software development principles.
This course gives a detailed overview of the relevant methods and paradigms which data scientists need to know in order to develop enterprise-grade models.
This course discusses traditional and agile project management techniques, highlighting both the Kanban and Scrum approaches. It explores relevant software development paradigms such as test-driven development, pair programming, mob programming, and extreme programming.
Special focus is given to the topic of testing and the consideration of how to bring a model into a production environment.
Modul: Data Science Software Engineering (DLBDSDSSE)
Niveau: Bachelor
Unterrichtssprache: English
This project course will give students hands-on experience in the challenging task of bringing a predictive model into a production environment. Students will need to consider practical aspects such as data storage and processing, as well as constraints such as service availability and the maximum amount of time a model is allowed to run due to external project requirements.
Through this course, students will obtain holistic overview of the integration of predictive models into enterprise-grade applications or services.
Modul: Projekt: From Model to Production (DLBDSMTP)
Niveau: Bachelor
Unterrichtssprache: English
Data are often considered the “new oil”, the raw material from which value is created. To harness the power of data, the data need to be stored and processed on a technical level. This course introduces the four “Vs” of data, as well as typical data sources and types.
The course discusses the most common data storage formats encountered in modern systems, focusing both on text-based as well as binary data formats.
Handling large amounts of data poses significant challenges for the underlying infrastructure. The course discusses the most important distributed and streaming data handling frameworks which are used in leading edge applications.
Modul: Big Data Technologies (DLBDSBDT)
Niveau: Bachelor
Unterrichtssprache: English
Modul: Cloud Computing (DLBDSCC)
Niveau: Bachelor
Unterrichtssprache: English
This course explores concepts of data engineering. Data engineering is concerned with the infrastructure aspects of data science such as data storage and provision, as well as the provisioning of suitable operational environments.
After laying out foundational notions and concepts of the discipline, this course addresses important developments in storage technology; aspects of systems architecture for processing data at scale; containerization as a modern take on virtualization; and the logic of data pipelines and associated operational aspects. Important issues pertaining to data security and protection are also given appropriate attention.
Modul: Data Engineering (DLBDSEDE1)
Niveau: Bachelor
Unterrichtssprache: English
The focus of this course is the implementation of a real-world data engineering use case in the form of a student portfolio.
To this end, students choose a project subject from the various sub-domains of data engineering. Examples include setting up a Docker container environment or dockerized service; implementing a data pipeline according to DataOps principles; and setting up an NoSQL data store.
The goal is for students to demonstrate they can transfer theoretical knowledge to an implementation scenario that closely mimics practical work in a professional data engineering setting.
Modul: Data Engineer II (DLBDSEDE2)
Niveau: Bachelor
Unterrichtssprache: English
super, dass Du Dich weiterentwickeln möchtest! Gerne unterstützen wir Dich individuell bei der Wahl Deiner Weiterbildung. Und vorab informieren wir Dich über Deine Möglichkeiten - Dein Infomaterial wird in Kürze per E-Mail bei Dir ankommen.
Deine nächsten Schritte:
Sobald Du Dich für eine Weiterbildung bei uns entschieden hast, kannst Du Dich mit Deinem Bildungsgutschein der Agentur für Arbeit oder des Jobcenters bei uns anmelden.
Du hast noch keine Bildungsgutschein? Auch kein Problem! Melde Dich in beiden Fällen gerne bei unserer Beratung, sie steht Dir mit Rat und Tat zur Seite:
Wir freuen uns darauf, Dich kennenzulernen.
Dein Team der IU Akademie
super, dass Du Dich weiterentwickeln möchtest! Gerne unterstützen wir Dich individuell bei der Wahl Deiner Weiterbildung. Und vorab informieren wir Dich über Deine Möglichkeiten - Dein Infomaterial wird in Kürze per E-Mail bei Dir ankommen.
Deine nächsten Schritte:
Sobald Du Dich für eine Weiterbildung bei uns entschieden hast, kannst Du Dich mit Deinem Bildungsgutschein der Agentur für Arbeit oder des Jobcenters bei uns anmelden.
Du hast noch keine Bildungsgutschein? Auch kein Problem! Melde Dich in beiden Fällen gerne bei unserer Beratung, sie steht Dir mit Rat und Tat zur Seite:
Wir freuen uns darauf, Dich kennenzulernen.
Dein Team der IU Akademie
Copyright © 2024 | IU Internationale Hochschule - Alle Rechte vorbehalten