xdt

Deine
Weiterbildungs-Merkliste
Du kannst maximal 5 Weiterbildungen in Deiner Merkliste speichern. Wenn Du eine weitere Weiterbildung hinzufügen möchtest, entferne bitte vorab eine der untenstehenden Weiterbildungen.
Du hast aktuell noch keine Weiterbildung ausgewählt. Hier kannst Du bis zu 5 Weiterbildungen speichern und anschließend Dein persönliches Infomaterial anfordern. Fordere Dein personalisiertes Infomaterial für bis zu 5 Weiterbildungen an.

Kurshandbuch
Fakten zur Weiterbildung

Weiterbildung: Fernstudium

Kursart: Online-Vorlesung

Dauer: Vollzeit: 8 Monate / Teilzeit: 16 Monate

Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.

Niveau: Die Weiterbildung ist auf dem inhaltlichen Niveau eines Master Studiengangs.
Eine Weiterbildung auf Master-Niveau ist anspruchsvoller als auf Bachelor-Niveau. Vorhandenes Grundlagenwissen im gewählten Fachbereich ist deshalb von Vorteil.
Zugangsempfehlungen:
  • Englisch auf B2 Niveau
  • Advanced Mathematics (DLMDSAM01)

Praxis-Austausch: Wöchentlich diskutieren Praxisexpert:innen mit Teilnehmenden aus verschiedenen Weiterbildungen aktuelle Fragestellungen, Tools und praktische Fallbeispiele in 90-minütigen Online-Veranstaltungen.

Kurs: DLMDSPWP01
Programming with Python
Kursbeschreibung
Python is one of the most versatile and widely used scripting languages. Its clean and uncluttered syntax as well as its straightforward design greatly contribute to this success and make it an ideal language for programming education. Its application ranges from web development to scientific computing. Especially in the fields of data science and artificial intelligence, it is the most common programming language supported by all major data-handling and analytical frameworks. This course provides a thorough introduction to the language and its main features, as well as insights into the rationale and application of important adjacent concepts such as environments, testing, and version control.
Kursinhalte
  1. Introduction to Python
    1. Data structures
    2. Functions
    3. Flow control
    4. Input / Output
    5. Modules & packages
  2. Classes and inheritance
    1. Scopes and namespaces
    2. Classes and inheritance
    3. Iterators and generators
  3. Errors and exceptions
    1. Syntax errors
    2. Handling and raising exceptions
    3. User-defined exceptions
  4. Important libraries
    1. Standard Python library
    2. Scientific calculations
    3. Speeding up Python
    4. Visualization
    5. Accessing databases
  5. Working with Python
    1. Virtual environments
    2. Managing packages
    3. Unit and integration testing
    4. Documenting code
  6. Version control
    1. Introduction to version control
    2. Version control with GIT

Fakten zum Modul

Modul: Programming with Python (DLMDSPWP)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Hausarbeit
Kurse im Modul:
  • DLMDSPWP01 (Programming with Python)
Kurs: DLMDSML01
Machine Learning
Kursbeschreibung

Machine learning is a field of scientific study concerned with algorithmic techniques that enable machines to learn performance on a given task via the discovery of patterns or regularities in exemplary data. Consequently, its methods commonly draw upon a statistical basis in conjunction with the computational capabilities of modern computing hardware.

This course aims to acquaint the student with the main branches of machine learning and provide a thorough introduction to the most widely used approaches and methods in this field.

Kursinhalte
  1. Introduction to Machine Learning
    1. Regression & Classification
    2. Supervised & Unsupervised Learning
    3. Reinforcement Learning
  2. Clustering
    1. Introduction to clustering
    2. K-Means
    3. Expectation Maximization
    4. DBScan
    5. Hierarchical Clustering
  3. Regression
    1. Linear & Non-linear Regression
    2. Logistic Regression
    3. Quantile Regression
    4. Multivariate Regression
    5. Lasso & Ridge Regression
  4. Support Vector Machines
    1. Introduction to Support Vector Machines
    2. SVM for Classification
    3. SVM for Regression
  5. Decision Trees
    1. Introduction to Decision Trees
    2. Decision Trees for Classification
    3. Decision Trees for Regression
  6. Genetic Algorithms
    1. Introduction to Genetic Algorithms
    2. Applications of Genetic Algorithms

Fakten zum Modul

Modul: Machine Learning (DLMDSML)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLMDSML01 (Machine Learning)
Kurs: DLMDSDL01
Deep Learning
Kursbeschreibung

Neural networks and deep learning approaches have revolutionized the fields of data science and artificial intelligence in recent years, and applications built on these techniques have reached or surpassed human performance in many specialized applications.

After a short review of the origins of neural networks and deep learning, this course will cover the most common neural network architectures and discuss in detail how neural networks are trained using dedicated data samples, avoiding common pitfalls such as overtraining.

The course includes a detailed overview of alternative methods to train neural networks and further network architectures which are relevant in a wide range of specialized application scenarios.

Kursinhalte
  1. Introduction to Neural Network and Deep Learning
    1. The Biological Brain
    2. Perceptron and Multi-Layer Perceptrons
  2. Network Architectures
    1. Feed-Forward Networks
    2. Convolutional Networks
    3. Recurrent Networks, Memory Cells and LSTMs
  3. Neural Network Training
    1. Weight Initialization and Transfer Function
    2. Backpropagation and Gradient Descent
    3. Regularization and Overtraining
  4. Alternative Training Methods
    1. Attention
    2. Feedback Alignment
    3. Synthetic Gradients
    4. Decoupled Network Interfaces
  5. Further Network Architectures
    1. Generative Adversarial Networks
    2. Autoencoders
    3. Restricted Boltzmann Machines
    4. Capsule Networks
    5. Spiking Networks

Fakten zum Modul

Modul: Deep Learning (DLMDSDL)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Mündliche Prüfung
Kurse im Modul:
  • DLMDSDL01 (Deep Learning)
Kurs: DLMAISCTAI01
Seminar: Current Topics in AI
Kursbeschreibung
The topic of artificial Intelligence (AI) has been addressed in computer science and cognitive science research since the 1950s; however, the meaning associated with the term has changed considerably over time. Having once been predominantly associated with logical calculus, reasoning, and planning, AI is now primarily interpreted in the context of deep networks of computational units. Despite these changes in approach, the important characteristic of AI continues to be the understanding and reproduction of cognitive abilities and functions by machines. This seminar strives to elucidate current research trends in AI. The students learn to independently analyze selected topics and case studies and link them with well-known concepts, as well as critically question and discuss them.
Kursinhalte
  • The seminar covers current topics in artificial intelligence. Each participant must write a seminar paper on a topic assigned to him/her.
Fakten zum Modul

Modul: Seminar: Current Topics in AI (DLMAISCTAI)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Forschungsbericht
Kurse im Modul:
  • DLMAISCTAI01 (Seminar: Current Topics in AI)
Kurs: DLMAIAI01
Artificial Intelligence
Kursbeschreibung

The quest for artificial intelligence has captured humanity’s interest for many decades and has been an active research area since the 1960s. This course will give a detailed overview of the historical developments, successes, and set-backs in AI, as well as the development and use of expert systems in early AI systems.

In order to understand cognitive processes, the course will give a brief overview of the biological brain and (human) cognitive processes and then focus on the development of modern AI systems fueled by recent developments in hard- and software. Particular focus will be given to discussion of the development of “narrow AI” systems for specific use cases vs. the creation of general artificial intelligence.

The course will give an overview of a wide range of potential application areas in artificial intelligence, including industry sectors such as autonomous driving and mobility, medicine, finance, retail, and manufacturing.

Kursinhalte
  1. History of AI
    1. Historical Developments
    2. AI Winter
    3. Notable Advances in AI
  2. Expert Systems
    1. Overview Over Expert Systems
    2. Introduction to Prolog
  3. Neuroscience
    1. The (Human) Brain
    2. Cognitive Processes
  4. Modern AI Systems
    1. Recent Developments in Hard- and Software
    2. Narrow vs General AI
    3. NLP and Computer Vision
  5. AI Application Areas
    1. Autonomous Vehicles & Mobility
    2. Personalized Medicine
    3. FinTech
    4. Retail & Industry
Fakten zum Modul

Modul: Artificial Intelligence (DLMAIAI)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Examen, 90 Minuten
Kurse im Modul:
  • DLMAIAI01 (Artificial Intelligence)
Kurs: DLMBITPAM01
IT Project Management
Kursbeschreibung
The purpose of this course is to introduce students to the concepts involved in IT project management. This is achieved through the development of an understanding of the fundamental tenets of project management enhancing the students’ ability to apply their knowledge, skills and competencies in analyzing and solving IT project management problems. A special focus is put on the specifics of IT project organization, cost management and the human factor within IT projects.
Kursinhalte
  1. Introduction: Characteristics of IT Projects
    1. Defining IT Projects
    2. Overview on Typical Roles and Phases of IT Projects
    3. Risks and Challenges of IT Projects
    4. Role of an IT Project Manager
  2. Organizing the Work
    1. Project Breakdown Structure, Work Packages
    2. Prioritization
    3. Time Planning, Milestones, Gantt Charts
    4. Definition of Done
  3. Cost Estimation and Controlling
    1. Challenges of Cost Estimation in IT Projects
    2. Estimation Techniques: 3-Point Estimation, Double Blind Expert Estimation, Function Points
    3. Cost Controlling Using Earned Value Analysis
    4. Risk Management
  4. The Human Factor
    1. Vision Keeping
    2. Stakeholder Management
    3. Conflict Management
  5. Organizing Small and Medium Projects
    1. Rational Unified Process (RUP)
    2. Agile Software Processes
    3. Scrum
    4. Plan-driven Project Management in Small Projects
  6. Organizing Large Projects
    1. PMBOK Guide
    2. Prince2
    3. Multi Project Management
    4. Agile Software Processes in Large Projects
    5. Selection of the Appropriate Project Management Method

Fakten zum Modul

Modul: IT Project Management (DLMCSITPM)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Klausur, 90 Minuten
Kurse im Modul:
  • DLMBITPAM01 (IT Project Management)
Kurs: DLMDSETPL01
Technical Project Planning
Kursbeschreibung
The focus of this course is to apply the project management knowledge gained previously in a practical portfolio project and reflect on the results. Students engage in this portfolio project and document the results, reflecting on the project management concepts they apply and the influence of these concepts on the success of the project.
Kursinhalte
  • In this course, students perform and document a portfolio project in which they apply the project management topics covered in previous modules.
Fakten zum Modul

Modul: Technical Project Planning (DLMDSETPL1)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Portfolio
Kurse im Modul:
  • DLMDSETPL01 (Technical Project Planning)
Kurs: DLMAISAIS01
Seminar: AI and Society
Kursbeschreibung
In the current decade, impressive advances have been achieved in the field of artificial intelligence. Several cognitive tasks like object recognition in images and video, natural language processing, game strategy, and autonomous driving and robotics are now being performed by machines at unprecedented levels of ability. This course will examine some of societal, economic, and political implications of these developments.
Kursinhalte
  • The seminar covers current topics concerning the societal impact of artificial intelligence. Each participant must create a seminar paper on a topic assigned to him/her. A current list of topics is given in the Learning Management System.
Fakten zum Modul

Modul: Seminar: AI and Society (DLMAISAIS)

Niveau: Master

Unterrichtssprache: English

Credits: 5 ECTS-Punkte
Äquivalent bei Anrechnung an der IU Internationale Hochschule.
Modulprüfung:
  • Seminararbeit
Kurse im Modul:
  • DLMAISAIS01 (Seminar: AI and Society)

JETZT INFOMATERIAL ANFORDERN

Schön, dass Du Deine Auswahl getroffen hast und mehr über Deine Weiterbildung bei der IU Akademie erfahren willst. Fordere jetzt Dein Infomaterial an: kostenlos und unverbindlich.

Du hast folgende auf Deiner Merkliste:

Copyright © 2024 | IU Internationale Hochschule - Alle Rechte vorbehalten