Weiterbildungs-Merkliste
Kursart: Online-Vorlesung
Dauer: Vollzeit: 6 Monate / Teilzeit: 12 Monate
Wir bieten digitale Kursunterlagen an, um Ressourcen zu schonen und unseren Beitrag zum Umweltschutz zu leisten.
Praxis-Austausch: Wöchentlich diskutieren Praxisexpert:innen mit Teilnehmenden aus verschiedenen Weiterbildungen aktuelle Fragestellungen, Tools und praktische Fallbeispiele in 90-minütigen Online-Veranstaltungen.
Neural networks and deep learning approaches have revolutionized the fields of data science and artificial intelligence in recent years, and applications built on these techniques have reached or surpassed human performance in many specialized applications.
After a short review of the origins of neural networks and deep learning, this course will cover the most common neural network architectures and discuss in detail how neural networks are trained using dedicated data samples, avoiding common pitfalls such as overtraining.
The course includes a detailed overview of alternative methods to train neural networks and further network architectures which are relevant in a wide range of specialized application scenarios.
Modul: Deep Learning (DLMDSDL)
Niveau: Master
Unterrichtssprache: English
Reinforcement learning allows computers to derive problem-solving strategies without being explicitly programmed for the specific task, similar to the way humans and animals learn.
After introducing the concepts of reinforcement learning, the course discusses the properties of Markov chains and single- and multi-armed bandits in detail. Special attention is given to the understanding of value functions and discounted value functions.
The course connects reinforcement learning with neural networks and deep learning and discusses how Q-Learning approaches can be used to utilize deep learning methods in reinforcement learning problems, including extensions such as double Q-Learning, hierarchical learning, and actor-critic learning.
Finally, the course discusses reinforcement learning approaches such as model-free and model-based learning and the tradeoff between exploration and exploitation.
Modul: Reinforcement Learning (DLMAIRIL)
Niveau: Master
Unterrichtssprache: English
Building a successful data-based product requires a significant amount of high-quality code which needs to run in a professional production environment. This course starts by introducing the agile approaches Scrum and Kanban and then discusses the shift from more traditional software development approaches to the DevOps culture.
Special focus is given to the discussion and understanding of techniques and approaches for producing high-quality code such as unit and integration testing, test-driven development, pair programing, and continuous delivery and integration.
Since many software artefacts are accessed via APIs, this course introduces concepts of API design and paradigms.
Finally, this course addresses the challenges of bringing code into a production environment, building a scalable environment, and using cloud-cased approaches.
Modul: Software Engineering for Data Intensive Sciences (DLMDSSEDIS)
Niveau: Master
Unterrichtssprache: English
Machine learning is a field of scientific study concerned with algorithmic techniques that enable machines to learn performance on a given task via the discovery of patterns or regularities in exemplary data. Consequently, its methods commonly draw upon a statistical basis in conjunction with the computational capabilities of modern computing hardware.
This course aims to acquaint the student with the main branches of machine learning and provide a thorough introduction to the most widely used approaches and methods in this field.
Modul: Machine Learning (DLMDSML)
Niveau: Master
Unterrichtssprache: English
Computer vision is generally understood as a subfield of artificial intelligence and primarily concerned with developing and researching methods that enable computers to gain a high-level understanding of images or videos. This allows computers to perform high level visual cognitive tasks, emulating or even surpassing the human capability to derive information from visual input.
This course provides an exposition to the foundational aspects from the domain of image processing which underly many of the more cognitive oriented approaches of computervision.
Starting from an overview on image acquisition the topic of image geometry is explored. Subsequently, common digital image representations are introduced together with basic morphological operations on them. The course closes with an introduction to filtering and texture representation.
Modul: Image Processing and Low Level Vision (DLMAIWFCV1)
Niveau: Master
Unterrichtssprache: English
Computer vision is generally understood as a subfield of artificial intelligence and primarily concerned with developing and researching methods that enable computers to gain a high-level understanding of images or videos. This allows computers to perform high level visual cognitive tasks, emulating or even surpassing the human capability to derive information from visual input.
This course treats subjects that belong to the mid-level of the Computer Vision hierarchy. As such, it forms the bridge from low-level image processing to high-level computer vision. In particular, important image features like lines, edges, corners and other points of interest will be introduced. Based on this,an overview on segmentation and shape inference is given. Moreover, in the course the relevant topics of motion estimation and tracking are covered.
Modul: Mid-Level Vision and Video (DLMAIWFCV2)
Niveau: Master
Unterrichtssprache: English
super, dass Du Dich weiterentwickeln möchtest! Gerne unterstützen wir Dich individuell bei der Wahl Deiner Weiterbildung. Und vorab informieren wir Dich über Deine Möglichkeiten - Dein Infomaterial wird in Kürze per E-Mail bei Dir ankommen.
Deine nächsten Schritte:
Sobald Du Dich für eine Weiterbildung bei uns entschieden hast, kannst Du Dich mit Deinem Bildungsgutschein der Agentur für Arbeit oder des Jobcenters bei uns anmelden.
Du hast noch keine Bildungsgutschein? Auch kein Problem! Melde Dich in beiden Fällen gerne bei unserer Beratung, sie steht Dir mit Rat und Tat zur Seite:
Wir freuen uns darauf, Dich kennenzulernen.
Dein Team der IU Akademie
super, dass Du Dich weiterentwickeln möchtest! Gerne unterstützen wir Dich individuell bei der Wahl Deiner Weiterbildung. Und vorab informieren wir Dich über Deine Möglichkeiten - Dein Infomaterial wird in Kürze per E-Mail bei Dir ankommen.
Deine nächsten Schritte:
Sobald Du Dich für eine Weiterbildung bei uns entschieden hast, kannst Du Dich mit Deinem Bildungsgutschein der Agentur für Arbeit oder des Jobcenters bei uns anmelden.
Du hast noch keine Bildungsgutschein? Auch kein Problem! Melde Dich in beiden Fällen gerne bei unserer Beratung, sie steht Dir mit Rat und Tat zur Seite:
Wir freuen uns darauf, Dich kennenzulernen.
Dein Team der IU Akademie
Copyright © 2024 | IU Internationale Hochschule - Alle Rechte vorbehalten